

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES RELATION BETWEEN ALGEBRAIC STRUCTURES

B. Satyanarayana & Mohammad Mastan

Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar-522510

ABSTRACT

In this paper, the authors developed the relations between different classes of algebraic structures such as BP/BM/BN/BZ/QS/B/Q – algebras with the family of BF – algebras i.e., $BF/BF_1/BF_2$ – algebras in detail. Several theorems were proved by imposing different types of necessary conditions on these algebras and provided examples wherever necessary. Authors also established some results by introducing e – commutative law on the family of BF – algebras

Keywords: BF- Algebra, BF_1 - algebra, BF_2 - algebra, BM - algebra, BN - algebra and e - Commutative law.

I. INTRODUCTION

Andrez Walendiziak [13] introduced the notion of BF – algebra, which is a generalization of B – algebra and also extended BF – Algebra to and thus studied two new algebras i.e., BF_1 – algebra and BF_2 – algebra. C.B.Kim and H.S.Kim [9] introduced the notion called BG – algebra which is a generalization of B – algebra. Y. B. Jun et al. [3] introduced the notion called BH – algebra, which is a generalization of BCI/BCK/BCH –algebras. Motivated by these algebraic structures, authors have come up with some interesting findings and believe that these results may be a contribution to the earlier theories of proportional calculi, based on which Imai and Iseki had introduced the two classes of algebras BCK and BCI [4, 5, 6, 7]. Throughout this paper authors mainly concentrated on establishing relations between families of e – commutative BF – Algebras with other classical algebras.

II. PRELIMINARIES

Definition 2.1. [13] Let X be a non-empty set equipped with a binary operation * and fixed element *e*. Then the algebraic structure (X, *, *e*) is said to be a BF – algebra, if it satisfies the following axioms, for all x, $y \in X$

(I) x * x = e(II) x * e = x(BF) e * (x * y) = y * x.

Definition 2.2. [9] Let X be a non-empty set equipped with a binary operation * and fixed element *e*. Then the algebraic structure (X, *, e) is said to be a BG – algebra, if it satisfies the following axioms, for all $x, y \in X$

(I) x * x = e(II) x * e = x(BG) (x * y) * (e * y) = x.

Definition 2.3.[3] Let X be a non-empty set equipped with a binary operation * and fixed element *e*. Then the algebraic structure (X, *, e) is said to be a BH – algebra, if it satisfies the following axioms, for all $x, y \in X$ (I) x * x = e (II) x * e = x (BH) x * y = e and y * x = e imply that x = y.

Definition 2.4. [13] Let *X* be a non-empty set equipped with a binary operation * and fixed element *e*. Then the algebraic structure (*X*, *, *e*) is said to be a BF₁ – algebra, if it satisfies the following axioms, for all *x*, *y* \in *X*

ISSN 2348 - 8034 Impact Factor- 5.070

(I) x * x = e(II) x * e = x(BF) e * (x * y) = y * x(BG) (x * y) * (e * y) = x

Definition 2.5. [13] Let *X* be a non-empty set equipped with a binary operation * and fixed element *e*. Then the algebraic structure (*X*, *, *e*) is said to be a BF₂ – algebra, if it satisfies the following axioms, for all *x*, $y \in X$ (I) x * x = e (II) x * e = x(BF) e * (x * y) = y * x (BH) x * y = e and y * x = e imply that x = y

Definition 2.6. [2] Let X be a non-empty set equipped with a binary operation * and fixed element *e*. Then the algebraic structure (X, *, e) is said to be a BP – algebra, if it satisfies the following axioms, for all x, y, $z \in X$. (I) x * x = e(BP₁) (x * (x * y)) = y(BP₂) (x * z) * (y * z) = x * y.

Definition 2.7. [8] Let X be a non-empty set equipped with a binary operation * and fixed element *e*. Then the algebraic structure (X, *, e) is said to be a BM – algebra, if it satisfies the following axioms, for all x, y, $z \in X$ (I) x * x = e (II) x * e = x (BM) (z * x) * (z * y) = y * x.

Definition 2.8. [10] Let *X* be a non-empty set equipped with a binary operation * and fixed element *e*. Then the algebraic structure(*X*, *, *e*) is said to be a BN – algebra, if it satisfies the following axioms, for all *x*, *y*, *z* \in *X* (I) x * x = e (II) x * e = x (BN) (x * y) * z = (e * z) * (y * x)

Definition 2.9. [14] Let X is a non-empty set equipped with a binary operation * and fixed element *e*. Then the algebraic structure (X, *, e) is said to be a BZ – algebra, if it satisfies the following axioms, for all $x, y, z \in X$ (II) x * e = x(BH) x * y = e and y * x = e imply that x = y(BZ)((x * z) * (y * z)) * (x * y) = e

Definition 2.10. [1] Let X be a non-empty set equipped with a binary operation * and fixed element *e*. Then the algebraic structure (X, *, e) is said to be a QS – algebra, if it satisfies the following axioms, for all $x, y, z \in X$

(I) x * x = e(II) x * e = x(Q) (x * y) * z = (x * z) * y(BM) (z * x) * (z * y) = y * x

Definition 2.11. [12] Let *X* be a non-empty set equipped with a binary operation * and fixed element *e*. Then the algebraic structure (*X*, *, *e*) is said to be a B – algebra, if it satisfies the following axioms, for all *x*, *y*, *z* \in *X*. (I) x * x = e (II) x * e = x (B) (x * y) * z = x * (z * (e * y))

128

ISSN 2348 - 8034 Impact Factor- 5.070

Definition 2.12. [11] Let *X* be a non-empty set equipped with a binary operation * and fixed element *e*. Then the algebraic structure (*X*, *, *e*) is said to be a Q – algebra, if it satisfies the following axioms, for all *x*, *y*, *z* \in *X* (I) x * x = e (II) x * e = x

(Q) (x * y) * z = (x * z) * y

Definition 2.13. Let X be a non-empty set equipped with a binary operation * and fixed element *e*. Then the algebraic structure (X, *, e) is said to be **e** – **commutative** if it satisfies the axiom x * (e * y) = y * (e * x), for all $x, y \in X$.

Notations. Throughout this article, authors used the following notations, for all x, y, $z \in X$. (D): (e x)e * =х (E): x * (e * y) = y * (e * x)(F): *(y* * x) = y х (G): (e * x) * (e * y) = e * (x * y) = y * x

Example 2.14. Let $X = \{0, 1, 2\}$ and * be the binary operation defined on X as shown in the following table.

*	0	1	2
0	0	1	2
1	1	0	2
2	2	2	0

Then (X, *, 0) is a BF – algebra and BH – Algebra, but not a BG – algebra. Hence, (X, *, 0) is a BF₂ – algebra.

Example 2.15. Let $X = \{0, 1, 2\}$ and * be the binary operation defined on X as shown in the following table.

*	0	1	2
0	0	1	2
1	1	0	1
2	2	2	0

Then (X, *, 0) is a BG – algebra and BH – algebra, but not BF – algebra.

Theorem 2.16. Every BG – algebra is a BH – algebra, but not conversely.

Proof. Let (X, *, e) is a BG – algebra and suppose that x * y = e, for all $x, y \in X$. We have, x = (x * y) * (e * y). $\Rightarrow x = e * (e * y)$ $\Rightarrow x = y$ i.e., $x * y = e \Rightarrow x = y$, for all $x, y \in X$. Also y * x = e = x * x $\Rightarrow y = x$ Hence, x * y = e = y * x = e implies that x = y, for all $x, y \in X$. 129 (C) Clobal Journal Of Engineering Science And Person

ISSN 2348 - 8034 Impact Factor- 5.070

Converse of the above statement is not true in general. From example 2.14, $(x * y) * (0 * y) \neq x$, for x = 1, y = 2. Hence, every BH – algebra need not be a BG – algebra.

Example 2.17. Let $X = \{0, 1, 2\}$ and * be the binary operation defined on X as shown in the following table.

*	0	1	2
0	0	1	2
1	1	0	2
2	2	1	0

Then (X, *, 0) is a BH – algebra, but not BF – algebra and BG – algebra.

Theorem 2.18. Every BF_1 – algebra is a BF_2 – algebra, but not conversely.

Proof. Let (X, *, e), for any fixed $e \in X$ be a BF_1 - algebra. Then it is enough to prove that (BH) also holds well. Suppose that x * y = e, for all $x, y \in X$. $(BG) \Rightarrow x = (x * y) * (e * y) = e * (e * y) = y \Rightarrow x = y$. i.e., $x * y = e \Rightarrow x = y$, for all $x, y \in X$. Again, suppose that $y * x = e \Rightarrow x * y = e * (y * x) = e * e = e \Rightarrow x * y = e \Rightarrow x = y$. i.e., $y * x = e \Rightarrow x = y$, for all $x, y \in X$. Hence, x * y = e = y * x implies that x = y, for all $x, y \in X$. Therefore, every BF_1 - algebra is a BF_2 - algebra. Converse of the above statement need not be true. From example 2.14, it is clear that $(x * y) * (0 * y) \neq x$ for x = 1, y = 2. i.e., (X, *, 0) is not a BG- algebra. Hence, (X, *, 0) is a BF_2 - algebra but not a BF_1 - algebra.

Corollary 2.19. Every $e - Commutative BF_1 - Algebra is a BF_2 - algebra, but not conversely.$ $Proof. From Theorem 2.18, Every BF_1 - algebra is a BF_2 - algebra and hence every <math>e - Commutative BF_1 - algebra is a BF_2 - algebra.$ Converse of the above statement need not be true.

Example 2.20. Let $X = \{0, 1, 2\}$ and * be the binary operation defined on X as shown in the following table.

*	0	1	2
0	0	1	2
1	1	0	0
2	2	0	0

But, $(x * y) * (0 * y) \neq x$ for x = 1, y = 2.

i.e., (X, *, 0) is not a BG – algebra and hence not a BF₁ – algebra and hence not a 0 – Commutative BF₁ – algebra. Therefore, every BF₂ – algebra need not be 0 – Commutative BF₁ – algebra.

130

Note: From the above example it is clear that,

- (i) Every BF_2 algebra need not be BG algebra.
- (ii) Every 0 commutative BF₂ algebra need not be a BG algebra.

Example 2.21. Let Z denotes the set of all Integers. Define a binary operation * on Z such that x * y = x - y, for all x, $y \in Z$. Then (Z,*,-) is a 0 – commutative BF₁– algebra and 0 – commutative BF₂– algebra.

Example.2.22. Let R denotes the set of all Real numbers. Define a binary operation * on R such that x * y = x - y, for all x, $y \in R$. Then (R,*, 0) is a 0 – commutative BF₁ – algebra and 0 – commutative BF₂ – algebra.

Example 2.23. Let R denotes the set of all Real numbers. Define a binary operation * on R such that $x * y = x - y + \sqrt{n}$, $n \ge 0$ for all x, $y \in R$. Then $(R,*,\sqrt{n})$ is a \sqrt{n} – commutative BF₁ – algebra and hence \sqrt{n} – commutative BF₂ – algebra.

Theorem 2.24. Every BP – algebra is a BF – algebra, but not conversely.

Proof. Let (X, *, e) is a BP – algebra. Then (I) holds well. Now it is enough to prove that (II) and (BF) also holds well.

(II): $x * e = x * (x * x)$	(by I)
$= \mathbf{x}$	$(by BP_1)$
(BF): $e * (y * x) = (x * x) * (y * x)$	(by I)
= x * y	$(by BP_2)$
Hence, $(X, *, e)$ is a BF – algebra.	

Converse of the above statement is not true in general. From example 2.14, (X, *, 0) is a BF – algebra, but not a BP– algebra, as $(x * z) * (y * z) \neq x * y$, for x = 0, y = 1. z = 2. Therefore, every BF – algebra need not be a BP – algebra.

Theorem 2.25. Every BP – algebra is a BG – algebra, but not conversely.

Proof. Let (X, *, e) is a BP – algebra. Then from theorem 2.24, (II) holds well. Now it is enough to prove that (BG) also holds well.

(BG): (x * z) * (e * z) = x * e	$(by BP_2)$
$= \mathbf{x}$	(by II)

Hence, (X, *, e) is a BG – algebra. Converse of the above statement is not true in general. From example 2.15, (X, *, 0) is a BG – algebra, but not a BP – algebra, as $(x * z) * (y * z) \neq x * y$, for x = 0, y = 1, z = 2. Therefore, every BG – algebra need not be BP – algebra.

Theorem 2.26. Every BP – algebra is a BH – algebra, but not conversely.

Proof. Let (X, *, e) is a BP – algebra. Then from theorem 2.24, (II) holds well. Now it is enough to prove that (BH) also holds well.

Suppose that x * y = e, for all $x, y \in X$. $(BP_1): x * (x * y) = y \Rightarrow x * (e) = y \Rightarrow x = y$. i.e., $x * y = e \Rightarrow x = y$ for all $x, y \in X$. Again, if y * x = e, for all $x, y \in X$, then x * y = e * (y * x) = e * (e) = e. i.e., $x * y = e \Rightarrow x = y$, for all $x, y \in X$. Hence, x * y = e = y * x implies that x = y, for all $x, y \in X$. Hence every BP – algebra is a BH – algebra.

131

(C)Global Journal Of Engineering Science And Researches

ISSN 2348 - 8034 Impact Factor- 5.070

ISSN 2348 - 8034 Impact Factor- 5.070

Converse of the above statement is not true in general. Refer the following example.

Example 2.27. Let $X = \{0, 1, 2\}$ and * be the binary operation defined on X as shown in the following table.

*	0	1	2
0	0	1	1
1	1	0	2
2	2	2	0

Clearly, (X, *, 0) is a BH – algebra, but not BP – algebra, as $(x * z) * (y * z) \neq x * y$, for x = 1, y = 0 and z = 2. Hence, every BH – algebra need not be a BP – algebra.

Theorem 2.28. Let (X, *, e) BP – algebra. Then X is a BF₁ – algebra.

Proof. Since every BP – algebra is a BF – algebra and BG – algebra, then every BP – algebra is a BF₁ – algebra.

Theorem 2.29. Every BP – algebra is a BF_2 – algebra, but not conversely.

Proof. Since every BP – Algebra is BF – algebra and BH – algebra then every BP – algebra is a BF_2 – algebra. Converse of the above statement need not be true.

Example 2.30. Let $X = \{0, 1, 2\}$ and * be the binary operation defined on X as shown in the following table.

*	0	1	2
0	0	2	1
1	1	0	0
2	2	0	0

Clearly, (X, *, 0) is a BF₂ – algebra, but not BP – Algebra, as $(x * z) * (y * z) \neq x * y$, for x = 1, y = 0 and z = 2 and also $y * (y * x) \neq x$, for x = 2, y = 1.

Therefore, every BP – algebra need not be a BF_2 – algebra.

Theorem 2.31. Let (X, *, e) be a BG – algebra with the condition that z = x * y, for all $x, y, z \in X$. Then (X, *, e) is a B – algebra.

Proof. Since (X, *, e) is a BG – algebra then it is enough to prove that (B) also holds good. Consider, (B): (x * y) * z = (x * y) * (x * y)= e (by I)

= x * x= x * ((x * y) * (e * y)) = x * (z * (e * y)), Hence, (x * y) * z = x * (z * (e * y)), for all x, y, z \in X. Therefore, (X,*, e) is a B – algebra.

Corollary 2.32. Let (X, *, e) be a BF₁ – algebra with the condition that z = x * y, for all $x, y, z \in X$. Then X is a B – algebra.

(C)Global Journal Of Engineering Science And Researches

(by I)

(by BG)

 $(by \ z = x * y)$

ISSN 2348 - 8034 Impact Factor- 5.070

Corollary 2.33. Let (X, *, e) be an e – commutative BF_1 – algebra with the condition that z = x * y. Then X is a B – algebra.

Theorem 2.34. Let (X, *, e) be a BG – algebra with the condition that z = e * y, for all $y, z \in X$. Then X is a B – algebra.

Proof. Since (X, *, e) is a BG – algebra, then it is enough to prove that (B) also holds good.(since z = e * y)Consider, (B): (x * y) * z = (x * y) * (e * y)(since z = e * y)= x(by BG)= x * e(by II)= x * ((e * y) * (e * y))(by I)= x * (z * (e * y))(since z = e * y)Hence, (x * y) * z = x * (z * (e * y)), for all x, y, $z \in X$.(since z = e * y)

Corollary 2.35. Let (X, *, e) be a BF₁ – algebra with the condition that z = e * y, for all $y, z \in X$. Then (X, *, e) is a B – algebra.

Corollary 2.36. Let (X, *, e) be an e – commutative BF_1 – algebra with the condition that z = e * y, for all $x, y, z \in X$. Then (X, *, e) is a B – algebra.

Theorem 2.37. Let (X, *, e) be a BG – algebra with z = e * y, for all $y, z \in X$. Then X is a Q – algebra.

Proof. Since X is a BG – algebra, then it is enough to prove that (Q) holds well. Consider (Q): (x * y) * z = (x * y) * (e * y)

Consider, (Q): $(x * y) * z = (x * y) * (e * y)$	(since $z = e * y$)
= x	(by BG)
= (x * (e * y)) * (e * (e * y))	(by BG)
= (x * (e * y)) * y	(by BG)
= (x * z) * y	(since $z = e * y$)
Hence, $(x * y) * z = (x * z) * y$, for all x, y, $z \in X$.	

Therefore, (X, *, e) is a Q – algebra.

Corollary 2.38. Let (X, *, e) be an e – commutative BG – algebra with z = e * y, for all $y, z \in X$. Then X is a Q – algebra.

Corollary 2.39. Let (X, *, e) be a BF₁ – algebra with z = e * y, for all $y, z \in X$. Then X is a Q – algebra.

Corollary 2.40. Let (X, *, e) be an e - commutative BF_1 – algebra with z = e * y, for all $y, z \in X$. Then X is a Q – algebra.

Theorem 2.41. Let (X, *, e) be an e – commutative BF_1 – algebra with z = x * y, for all $x, y, z \in X$. Then X is a Q – algebra.

Proof. Since X be an e – commutative BF_1 – algebra, then it is enough to prove that (Q) holds well. Consider, (Q): (x * y) * z = (x * y) * (x * y) (since z = x * y)

$U: (\mathbf{x} + \mathbf{y}) + \mathbf{z} = (\mathbf{x} + \mathbf{y}) + (\mathbf{x} + \mathbf{y})$	$(\operatorname{SINCe} Z = X + y)$
= e	(by I)
= y * y	(by I)
= ((y *x) * (e * x)) * y	(by BG)
= (x * (e * (y *x))) * y	(by E)
= (x * (x * y)) * y	(by BF)
= (x * z) * y	(since $z = x * y$)

133

Hence, (x * y) * z = (x * z) * y, for all x, y, $z \in X$. Therefore, (X,*,e) is a Q – algebra.

Theorem 2.42. Let (X, *, e) be a BF₁ – algebra with z = x * y, for all $x, y, z \in X$ and (G). Then X is a Q – algebra.

ISSN 2348 - 8034 Impact Factor- 5.070

Proof: Since X is a BF_1 – algebra with z = x * y, for all x, y, $z \in X$ and (G), then it is enough to prove that (Q) holds well.

Consider, (Q): (x * y) * z = (x * y) * (x * y)(since z = x * y) = e(by I) (by I) = v * v= ((y * x) * (e * x)) * y(by BG) = (e * ((e * x) * (y * x))) * y(by BF) = ((e * (e * x)) * (e * (y * x))) * y(by G) (by D and BF) = (x * (x * y)) * y= (x * z) * y(since z = x * y) Hence, (x * y) * z = (x * z) * y, for all x, y, $z \in X$. Therefore, (X, *, e) is a Q – algebra.

Theorem 2.43. Let (X, *, e) be a BF – algebra with the condition that z = x * y, for all $x, y, z \in X$. Then X is a BN – algebra.

Proof. Since X is a BF – algebra then it is enough to prove that (BN) holds good.

Consider, (BN): $(x * y) * z = (x * y) * (x * y)$	(since z = x * y)
= e	(by I)
= (y * x) * (y * x)	(by I)
= (e * (x * y)) * (y * x)	(by BF)
= (e * z) * (y * x)	(since $z = x * y$)
Hence, $(x * y) * z = (e * z) * (y * x)$, for all x, y, $z \in X$.	
Therefore, (X,*, e) is a BN – algebra.	

Corollary 2.44. Let (X, *, e) be an e – commutative BF – algebra with z = x * y, for all $x, y, z \in X$. Then X is a BN – algebra.

Corollary 2.45. Let (X, *, e) be a BF₁ – algebra with z = x * y, for all $x, y, z \in X$. Then X is a BN – algebra.

Corollary 2.46. Let (X, *, e) be a BF₂ – algebra with z = x * y, for all $x, y, z \in X$. Then X is a BN – algebra.

Corollary 2.47. Let (X, *, e) be an e – commutative BF_1 – algebra with z = x * y, for all $x, y, z \in X$. Then X is a BN – algebra.

Corollary 2.48. Let (X, *, e) be an e – commutative BF_2 – algebra with z = x * y, for all $x, y, z \in X$. Then X is a BN – algebra.

Theorem 2.49. Let (X, *, e) be an e – commutative BF_1 – algebra with z = e * y, for all $y, z \in X$. Then X is a BN – algebra.

Proof. Taking z = e*y and using the conditions (BG), (F) and (D) easily any one can prove this theorem.

(C)Global Journal Of Engineering Science And Researches

. .

ISSN 2348 - 8034 Impact Factor- 5.070

Theorem 2.50. Let (X,*, e) be an e – commutative BF – algebra. Then X is a BN – algebra.

Proof. By using (D), (E) and (BF) we can prove this theorem.

Corollary 2.51. Let (X, *, e) be an e – commutative BF_1 – algebra. Then X is a BN – algebra.

Corollary 2.52. Let (X, *, e) be an e – commutative BF_2 – algebra. Then X is a BN – algebra.

Theorem 2.53. Let (X,*, e) be a BF – algebra with (G). Then X is a BN – algebra.

Proof. Proof is straight forward. **Corollary 2.54**. Let (X, *, e) be a BF₁ – algebra with (G). Then X is a BN – algebra.

Corollary 2.55. Let (X, *, e) be a BF₂ – algebra with (G). Then X is a BN – algebra.

Proposition 2.56. Let (X, *, e) be a BM – algebra. Then for all $x, y \in X$, the following are true.

(i) e * e = e
(ii) x * x = e
(D) e * (e * x) = x
(E) x * (e * y) = y * (e * x)
(F) x * (x * y) = y
(G) (e * x) * (e * y) = y * x = e * (x * y)

Proof. Proof is straight forward.

Theorem 2.57. Every BM – algebra is a BF – algebra, but not conversely. Converse of the above statement need not be true.

Example 2.58. Let $X = \{0, 1, 2\}$ and * be the binary operation defined on X as shown in the following table.

*	0	1	2
0	0	1	2
1	1	0	1
2	2	1	0

135

Then (X, *, 0) is a BF – algebra, but not a BM – algebra, as $(z * x) * (z * y) \neq y * x$, for x = 2, y = 0 and z = 1. Therefore, every BF – algebra need not be a BM – algebra.

Theorem 2.59. Every BM – algebra is a BG – algebra, but not conversely.

Proof. By using the conditions (BF), (G), (BM) and (II), we prove this theorem. Converse of the above statement need not be true. From example 2.14, $(z * x) * (z * y) \neq y * x$, for x = 0, y = 1, z = 2. Therefore, every BG – algebra need not be a BM – algebra.

Theorem 2.60. Let (X, *, e) is a BM – algebra. Then X is a BF₁ – algebra.

Theorem 2.61. Every BM – algebra is a BH – algebra, but not conversely.

Proof. Proof is straight forward.

Converse of the above statement need not be true.

Example 2.62. Let $X = \{0, 1, 2\}$ and * be the binary operation defined on X as shown in the following table.

*	0	1	2
0	0	2	1
1	1	0	2
2	2	2	0

Then (X, *, 0) is a BH – algebra but not a BM – algebra, as $(z * x) * (z * y) \neq y * x$, for x = 0, y = 1 and z = 2. Therefore, every BH – algebra need not be a BM – algebra.

Theorem 2.63. Every BM – algebra is a BF₂ – algebra but not conversely.

Proof: Since every BM – algebra is a BF – algebra and BH – algebra then every BM – algebra is a BF_2 – algebra. Converse of the above statement need not be true. Refer the following example.

Example 2.64. Let $X = \{0, 1, 2\}$ and * be the binary operation defined on X as shown in the following table.

*	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	1
3	3	2	3	0

Clearly, (X, *, 0) is a BF₂ – algebra but not a BM – algebra, as $(z * x) * (z * y) \neq y * x$, for x = 2, y = 0 and z = 3. Therefore, every BF₂ – algebra need not be a BM – algebra.

136

Theorem 2.65. Cancellation laws holds good in BM – algebra.

Proof. Let (X, *, e) be a BM – algebra. Left Cancellation Law: $z * x = z * y \Rightarrow x = y$, for all x, y, $z \in X$. Suppose that, z * x = z * yFrom (BM), (z * x) * (z * y) = y * x $\Rightarrow (z * y) * (z * y) = y * x$ $\Rightarrow e = y * x$ (by II) Since, $x * y = e * (y * x) = e * e = e \Rightarrow x * y = e$ Since every BM – algebra is a BG – algebra, then $x = (x * y) * (e * y) = e * (e * y) = y \Rightarrow x = y$. Thus, left Cancellation Law holds good in BM – algebra. Right Cancellation Law: $x * z = y * z \Rightarrow x = y$, for all x, y, $z \in X$. Suppose that x * z = y * z

ISSN 2348 - 8034
Impact Factor- 5.070

$\Rightarrow \mathbf{e} \ast (\mathbf{x} \ast \mathbf{z}) = \mathbf{e} \ast (\mathbf{y} \ast \mathbf{z})$	
\Rightarrow z * x = z * y	(by BF)
\Rightarrow x = y	(by LCL)

Therefore, right Cancellation Law holds good in BM - algebra.

Theorem 2.66. Let (X, *, e) be an e - commutative BF_1 - algebra with z = x * y, for all $x, y, z \in X$. Then (X, *, e) is a BM – algebra.

Proof. Since (X, *, e) is an e - commutative BF_1 – algebra then (II) holds good. Now it is enough to prove that (BM): (z * x) * (z * y) = y * x, for all $x, y, z \in X$, also holds well.

Consider, $(z * x) * (z * y) = (z * x) * (e * (y * z))$	
= (y * z) * (e * (z * x))	(by E)
= (y * z) * (e * (e * y))	(since $z * x = e * y$)
= (y * z) * y	(by D)
= e * (y * (y * z))	(by BF)
= e * z	(by F)
= y * x	(by BF)
Hence, $(z * x) * (z * y) = y * x$, for all x, y, $z \in X$.	

Therefore, (X, *, e) is a BM – algebra.

Corollary 2.67. Let (X, *, e) be an e – commutative BF_1 – algebra with z = x * y, for all $x, y, z \in X$. Then (X, *, e) is a QS – algebra.

Theorem 2.68. Let (X, *, e) be a BF₁ – algebra with z = x * y, for all $x, y, z \in X$ and (G). Then (X, *, e) is a BM – algebra.

Proof. Taking z = x*y and using (BF), (G) and (F) we can prove this theorem.

Corollary .2.69. Let (X, *, e) be a BF₁ – algebra with z = x * y, for all $x, y, z \in X$ and (G). Then (X, *, e) is a QS – algebra.

Theorem 2.70. Let (X, *, e) be an e - commutative BF_1 - algebra with z = x * y, for all $x, y, z \in X$. Then (X, *, e) is a BM - algebra.

Proof. Proof is similar to proof of theorem 2.69.

Theorem 2.71. Let (X, *, e) be an e – commutative BF_1 – algebra with e * z = x * z, for all $x, z \in X$. Then X is a BM – algebra.

Proof. Since (X, *, e) is an e – commutative BF_1 – Algebra, then (II) holds good. It is enough to prove that (BM): (z * x) * (z * y) = y * x, for all $x, y, z \in X$ also holds good.

Consider, (z * x) * (z * y) = (e * (x * z)) * (z * y)(by BF)= (e * (e * z)) * (z * y)(since x * z = e * z)= z * (z * y)(by D)= y * e(by II)= y * (z * z)(by I)= y * (z * (z * x))(since x * z = e * z)= y * x(by G)Hence, (z * x) * (z * y) = y * x, for all x, y, $z \in X$

Therefore, (X,*, e) is a BM – algebra.

ISSN 2348 - 8034 Impact Factor- 5.070

Corollary 2.72. Let (X, *, e) is a BF₁ – algebra with (F) and e * z = x * z, for all $x, z \in X$. Then X is a BM – algebra.

Theorem 2.73. Let (X, *, e) be an e – commutative BF_1 – algebra with z * y = e * x, for all $x, y, z \in X$. Then X is a BM – algebra.

Proof. Proof is similar to proof of the theorem 2.71.

Theorem 2.74. Let (X, *, e) is a BF₁ – algebra with (G) and z * y = e * x, for all $x, y, z \in X$. Then X is a BM – algebra.

Proof. By taking z * y = e * x and using (BF), (G), (D) and (F), we can prove theorem 2.74.

Theorem 2.75. Let (X, *, e) is an e – commutative BF – algebra with (x * z) * (y * z) = x * y, for all $x, y, z \in X$. Then (X, *, e) is a BM – algebra.

Proof. Taking (x * z) * (y * z) = x * y and using (BF) and (E) we prove this theorem.

Theorem 2.76. Let (X, *, e) be a BP – algebra with x * z = e, for all $x, z \in X$. Then X is a BZ – algebra.

Proof. Let x * z = e. Consider, for any $x, y, z \in X$ ((x * z) * (y * z)) * (x * y) = ((e) * (y * z)) * (x * y)(since x * z = e) = (z * y) * (x * y)(by BF) $(by BP_2)$ = z * x(by BF) = e * (x * z)(since x * z = e) = e * e(by II) = eHence, ((x * z) * (y * z)) * (x * y) = e, for all x, y, $z \in X$. Therefore, (X, *, e) is a BZ – algebra.

Theorem 2.77. Let (X, *, e) be a BP – algebra with x * y = e, for all $x, y \in X$. Then X is a BZ – algebra.

Proof. Let (X, *, e) be a BP – algebra with x * y = e, for all $x, y \in X$.(since x * y = e)Consider for all $x, y, z \in X$, ((x * z) * (y * z)) * (x * y) = ((x * z) * (y * z)) * (e)(since x * y = e)= (x * z) * (y * z)(by II)= x * y(by BP₂)= e(since x * y = e)

Hence, (X, *, e) is a BZ – algebra.

Theorem 2.78. Let (X,*, e) be a BP – algebra with (E). Then X is a BM – algebra.

Proof. Using (I), (BP₁), (BF), (E) and (BP₂) any one can prove this theorem.

Theorem 2.79. Let (X,*, e) be a BP – algebra with (G). Then X is a BM – algebra.

Proof. It is enough to prove that (BM) holds good.(by BF)Consider, (z * x) * (z * y) = e * ((z * y) * (z * x))(by BF)= (e * (z * y)) * (e * (z * x))(by G)

(C)Global Journal Of Engineering Science And Researches

138

= (y * z) * (x * z)= y * x

Hence, every BP – algebra with (G) is a BM – algebra.

Theorem 2.80. Let (X,*, e) is a BM – algebra. Then X is a BP – algebra.

Proof. Proof is straight forward.

Theorem 2.81. Let (X,*, e) be an e – commutative BM – algebra. Then X is a BP – Algebra.

Proof. Let (X, *, e) is an e – commutative BM – Algebra. It is enough to prove that (BP_1) : x * (x * y) = y and (BP_2) : (y * z) * (x * z) = y * x, for all $x, y, z \in X$.

Consider $x * (x * y) = x * (e * (y * x))$	(by BF)
= (y * x) * (e * x)	(by E)
= e * ((e * x) * (y * x))	(by BF)
= e * (e * y)	(by BM)
= y	(by D)
Hence, $x * (x * y) = y$, for all $x, y \in X$.	
Again consider, (BP_2) : $(y * z) * (x * z) = (y * z)$	(e * (z * x)) (by BF)
$= (\mathbf{z} * \mathbf{x})$	(e * (y * z)) (by E)
$=(\mathbf{z} * \mathbf{x})$	* (z * y) (by BF)
= y * x	(by BM)
$\mathbf{H}_{\mathbf{a}} = \mathbf{h}_{\mathbf{a}} + $	

Hence, (y * z) * (x * z) = y * x, for all x, y, $z \in X$. Therefore, every e – Commutative BM – algebra is a BP – algebra.

Theorem 2.82. Every BM – algebra with y * z = e, for all $y, z \in X$ is a BZ – algebra, but not conversely.

Proof. Let (X, *, e) is a BM – Algebra. Now, it is enough to prove that ((x * z) * (y * z)) * (x * y) = e, for all x, y, $z \in X$. Consider, ((x * z) * (y * z)) * (x * y) = ((x * z) * (e)) * (x * y) (since x * z = e) = (x * z) * (x * y) = y * z = e(by BM) = e(since y * z = e)

Therefore, (X, *, e) is a BZ – algebra.

Corollary 2.83. Every BM – algebra with x * z = e, for all $x, z \in X$ is a BZ – algebra, but not conversely.

REFERENCES

- [1] Ahn. S. S and Kim. H. S., On QS-algebras, Journal of Chungcheong Math. Society, 12(1999), 33–41.
- [2] Ahn. S. S, Han. J. S, On **BP Algebras**, Hacettepe Jr. of Math. and Stat., 43 (2013), 551 557.
- [3] Jun. Y. B, Roh. E. H. and Kim. H. S., On BH-algebras, Scientiae Mathematicae 1(1998), 347–354.
- [4] Imai. Y and Iseki. K, On axiom systems of **Propositional Calculi**, XIV, Proc. Japan Academy, 42(1966) 19-22.
- [5] Iseki. K, An Algebra related with a **Propositional Calculus**, Proc. Japan Academy, 42(1966), 26 29.
- [6] Iseki. K and Tanaka. S, An Introduction to the theory of BCK Algebras, Math. Japonica, 23(1978), 1-26.
- [7] Iseki. K, On BCI Algebras, Math. Seminar Notes, 8(1980), 125-130.
- [8] Kim. C. B and Kim. H. S., On **BM Algebras**, Scientiae Mathematicae Japonicae Online, e-2006, 215–221.
- [9] Kim. C. B and Kim. H. S., On BG Algebras, Demonstratio Mathematica, 41(2008), 497 505.

139

(C)Global Journal Of Engineering Science And Researches

ISSN 2348 - 8034 Impact Factor- 5.070 (by BF) (by BP₂)

ISSN 2348 - 8034 Impact Factor- 5.070

[10]Kim. C. B and Kim. H. S., On BN-algebras, Kyungpook Mathematical Journal, 53(2013), 175-184.
[11]Neggers. J, Ahn. S. S and H. S. Kim, On Q – algebras, Int. Jr. Math. and Math. Sci., 27 (2001), 749 – 757.
[12]Neggers. J and Kim. H. S., On B – algebras, Math. Vesnik, 54(2002), 21 – 29.
[13]Walendziak . A, On BF – algebras, Mathematica Slovaca, 57(2007), 119 – 128.
[14]Zhang. X and Ye. R, BZ – Algebra and group-, Jr. Math. Phy. Sciences, 29(1995), 223-233.

