Global Journal of Engineering Science and Researches RELATION BETWEEN ALGEBRAIC STRUCTURES
 B. Satyanarayana \& Mohammad Mastan
 Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar-522510

Abstract

In this paper, the authors developed the relations between different classes of algebraic structures such as $\mathrm{BP} / \mathrm{BM} / \mathrm{BN} / \mathrm{BZ} / \mathrm{QS} / \mathrm{B} / \mathrm{Q}$ - algebras with the family of $\mathrm{BF}-$ algebras i.e., $\mathrm{BF}^{2} / \mathrm{BF}_{1} / \mathrm{BF}_{2}$ - algebras in detail. Several theorems were proved by imposing different types of necessary conditions on these algebras and provided examples wherever necessary. Authors also established some results by introducing e-commutative law on the family of BF - algebras

Keywords: $B F-$ Algebra, $B F_{1}$ - algebra, $B F_{2}$ - algebra, $B M-$ algebra, $B N$ - algebra and $e-C o m m u t a t i v e ~ l a w$.

I. INTRODUCTION

Andrez Walendiziak [13] introduced the notion of BF - algebra, which is a generalization of $\mathrm{B}-$ algebra and also extended BF - Algebra to and thus studied two new algebras i.e., $\mathrm{BF}_{1}-$ algebra and $\mathrm{BF}_{2}-$ algebra. C.B.Kim and H.S.Kim [9] introduced the notion called BG - algebra which is a generalization of $\mathrm{B}-\mathrm{algebra}$. Y. B. Jun et al. [3] introduced the notion called BH - algebra, which is a generalization of $\mathrm{BCI} / \mathrm{BCK} / \mathrm{BCH}$-algebras. Motivated by these algebraic structures, authors have come up with some interesting findings and believe that these results may be a contribution to the earlier theories of proportional calculi, based on which Imai and Iseki had introduced the two classes of algebras BCK and BCI [4, 5, 6, 7]. Throughout this paper authors mainly concentrated on establishing relations between families of $\mathrm{e}-$ commutative BF - Algebras with other classical algebras.

II. PRELIMINARIES

Definition 2.1. [13] Let X be a non-empty set equipped with a binary operation $*$ and fixed element e. Then the algebraic structure $(X, *, e)$ is said to be a BF - algebra, if it satisfies the following axioms, for all $x, y \in X$
(I) $x * x=e$
(II) $x * e=x$
(BF) $e *(x * y)=y * x$.
Definition 2.2. [9] Let X be a non-empty set equipped with a binary operation $*$ and fixed element e. Then the algebraic structure $(X, *, e)$ is said to be a BG - algebra, if it satisfies the following axioms, for all $x, y \in X$
(I) $x * x=e$
(II) $x * e=x$
(BG) $(x * y) *(e * y)=x$.
Definition 2.3.[3] Let X be a non-empty set equipped with a binary operation $*$ and fixed element e. Then the algebraic structure $(X, *, e)$ is said to be a BH - algebra, if it satisfies the following axioms, for all $x, y \in X$
(I) $x * x=e$
(II) $x * e=x$
(BH) $x * y=e$ and $y * x=e$ imply that $x=y$.
Definition 2.4. [13] Let X be a non-empty set equipped with a binary operation $*$ and fixed element e. Then the algebraic structure $(X, *, e)$ is said to be a BF_{1} - algebra, if it satisfies the following axioms, for all $x, y \in X$
[ICESTM-2018]
(I) $x * x=e$
(II) $x * e=x$
(BF) $e *(x * y)=y * x$
(BG) $(x * y) *(e * y)=x$
Definition 2.5. [13] Let X be a non-empty set equipped with a binary operation $*$ and fixed element e. Then the algebraic structure $(X, *, e)$ is said to be a BF_{2} - algebra, if it satisfies the following axioms, for all $x, y \in X$
(I) $x * x=e$
(II) $x * e=x$
(BF) $e *(x * y)=y * x$
(BH) $x * y=e$ and $y * x=e$ imply that $x=y$
Definition 2.6. [2] Let X be a non-empty set equipped with a binary operation $*$ and fixed element e. Then the algebraic structure $(X, *, e)$ is said to be a BP - algebra, if it satisfies the following axioms, for all $x, y, z \in X$.
(I) $x * x=e$
$\left(\mathrm{BP}_{1}\right)(x *(x * y))=y$
$\left(\mathrm{BP}_{2}\right)(x * z) *(y * z)=x * y$.
Definition 2.7. [8] Let X be a non-empty set equipped with a binary operation $*$ and fixed element e. Then the algebraic structure $(X, *, e)$ is said to be a BM - algebra, if it satisfies the following axioms, for all $x, y, z \in X$
(I) $x * x=e$
(II) $x * e=x$
(BM) $(z * x) *(z * y)=y * x$.
Definition 2.8. [10] Let X be a non-empty set equipped with a binary operation $*$ and fixed element e. Then the algebraic structure $(X, *, e)$ is said to be a BN - algebra, if it satisfies the following axioms, for all $x, y, z \in X$
(I) $x * x=e$
(II) $x * e=x$
(BN) $(x * y) * z=(e * z) *(y * x)$
Definition 2.9. [14] Let X is a non-empty set equipped with a binary operation $*$ and fixed element e. Then the algebraic structure $(X, * e)$ is said to be a BZ - algebra, if it satisfies the following axioms, for all $x, y, z \in X$
(II) $x * e=x$
(BH) $x * y=e$ and $y * x=e$ imply that $x=y$
$(\mathrm{BZ})((x * z) *(y * z)) *(x * y)=e$
Definition 2.10. [1] Let X be a non-empty set equipped with a binary operation $*$ and fixed element e. Then the algebraic structure $(X, *, e)$ is said to be a QS - algebra, if it satisfies the following axioms, for all $x, y, z \in X$
(I) $x * x=e$
(II) $x * e=x$
(Q) $(x * y) * z=(x * z) * y$
(BM) $(z * x) *(z * y)=y * x$
Definition 2.11. [12] Let X be a non-empty set equipped with a binary operation $*$ and fixed element e. Then the algebraic structure $(X, *, e)$ is said to be a $\mathrm{B}-$ algebra, if it satisfies the following axioms, for all $x, y, z \in X$.
(I) $x * x=e$
(II) $x * e=x$
(B) $(x * y) * z=x *(z *(e * y))$
[ICESTM-2018]
ISSN 2348-8034
Impact Factor- $\mathbf{5 . 0 7 0}$
Definition 2.12. [11] Let X be a non-empty set equipped with a binary operation $*$ and fixed element e. Then the algebraic structure $(X, *, e)$ is said to be a Q - algebra, if it satisfies the following axioms, for all $x, y, z \in X$
(I) $x * x=e$
(II) $x * e=x$
(Q) $(x * y) * z=(x * z) * y$

Definition 2.13. Let X be a non-empty set equipped with a binary operation $*$ and fixed element e. Then the algebraic structure $(X, *, e)$ is said to be $\mathbf{e}-\mathbf{c o m m u t a t i v e}$ if it satisfies the axiom $x *(e * y)=y *(e * x)$, for all x, y $\in X$.

Notations. Throughout this article, authors used the following notations, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.

Example 2.14. Let $\mathrm{X}=\{0,1,2\}$ and $*$ be the binary operation defined on X as shown in the following table.

$*$	0	1	2
0	0	1	2
1	1	0	2
2	2	2	0

Then $(\mathrm{X}, *, 0)$ is a BF - algebra and BH - Algebra, but not a BG - algebra. Hence, $(\mathrm{X}, *, 0)$ is a $\mathrm{BF}_{2}-$ algebra.
Example 2.15. Let $\mathrm{X}=\{0,1,2\}$ and $*$ be the binary operation defined on X as shown in the following table.

$*$	0	1	2
0	0	1	2
1	1	0	1
2	2	2	0

Then $(\mathrm{X}, *, 0)$ is a BG - algebra and $\mathrm{BH}-$ algebra, but not $\mathrm{BF}-$ algebra.
Theorem 2.16. Every BG - algebra is a BH - algebra, but not conversely.
Proof. Let $(X, *, e)$ is a $B G-$ algebra and suppose that $x * y=e$, for all $x, y \in X$.
We have, $x=(x * y) *(e * y)$.
(by BG)
$\Rightarrow \mathrm{x}=\mathrm{e} *(\mathrm{e} * \mathrm{y})$
(by D)
$\Rightarrow \mathrm{x}=\mathrm{y}$
i.e., $x * y=e \Rightarrow x=y$, for all $x, y \in X$.

Also $y * x=e=x * x$
(by I)
$\Rightarrow y=x$
(Refer [9])
Hence, $x * y=e=y * x=e$ implies that $x=y$, for all $x, y \in X$.

Converse of the above statement is not true in general.
From example 2.14, $(x * y) *(0 * y) \neq x$, for $x=1, y=2$.
Hence, every BH - algebra need not be a BG - algebra.
Example 2.17. Let $\mathrm{X}=\{0,1,2\}$ and $*$ be the binary operation defined on X as shown in the following table.

$*$	0	1	2
0	0	1	2
1	1	0	2
2	2	1	0

Then $(\mathrm{X}, *, 0)$ is a BH - algebra, but not BF - algebra and BG - algebra.
Theorem 2.18. Every BF_{1} - algebra is a BF_{2} - algebra, but not conversely.
Proof. Let $(X, *, e)$, for any fixed $e \in X$ be a $\mathrm{BF}_{1}-$ algebra. Then it is enough to prove that (BH) also holds well.
Suppose that $\mathrm{x} * \mathrm{y}=\mathrm{e}$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.
$(\mathrm{BG}) \Rightarrow \mathrm{x}=(\mathrm{x} * \mathrm{y}) *(\mathrm{e} * \mathrm{y})=\mathrm{e} *(\mathrm{e} * \mathrm{y})=\mathrm{y} \Rightarrow \mathrm{x}=\mathrm{y}$.
i.e., $x * y=e \Rightarrow x=y$, for all $x, y \in X$.

Again, suppose that $y * x=e \Rightarrow x * y=e *(y * x)=e * e=e \Rightarrow x * y=e \Rightarrow x=y$.
i.e., $y * x=e \Rightarrow x=y$, for all $x, y \in X$.

Hence, $x * y=e=y * x$ implies that $x=y$, for all $x, y \in X$.
Therefore, every $\mathrm{BF}_{1}-$ algebra is a $\mathrm{BF}_{2}-$ algebra.
Converse of the above statement need not be true.
From example 2.14, it is clear that $(x * y) *(0 * y) \neq x$ for $x=1, y=2$.
i.e., $(\mathrm{X}, *, 0)$ is not a BG - algebra.

Hence, $(\mathrm{X}, *, 0)$ is a BF_{2} - algebra but not a BF_{1} - algebra.
Corollary 2.19. Every e - Commutative BF_{1} - Algebra is a BF_{2} - algebra, but not conversely.
Proof. From Theorem 2.18, Every BF_{1} - algebra is a BF_{2} - algebra and hence every e - Commutative $\mathrm{BF}_{1}-$ algebra is a $\mathrm{BF}_{2}-$ algebra.
Converse of the above statement need not be true.

Example 2.20. Let $\mathrm{X}=\{0,1,2\}$ and $*$ be the binary operation defined on X as shown in the following table.

$*$	0	1	2
0	0	1	2
1	1	0	0
2	2	0	0

But, $(\mathrm{x} * \mathrm{y}) *(0 * y) \neq \mathrm{x}$ for $\mathrm{x}=1, \mathrm{y}=2$.
i.e., $(X, *, 0)$ is not a $B G$ - algebra and hence not a $B F_{1}$ - algebra and hence not a $0-$ Commutative $\mathrm{BF}_{1}-$ algebra. Therefore, every BF_{2} - algebra need not be 0 - Commutative BF_{1} - algebra.
[ICESTM-2018]
ISSN 2348-8034
Note: From the above example it is clear that,
(i) Every BF_{2} - algebra need not be BG - algebra.
(ii) Every 0 - commutative BF_{2} - algebra need not be a BG - algebra.

Example 2.21. Let Z denotes the set of all Integers. Define a binary operation $*$ on Z such that $x * y=x-y$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{Z}$. Then $(\mathrm{Z}, *,-)$ is a $0-$ commutative BF_{1} - algebra and 0 - commutative $\mathrm{BF}_{2}-$ algebra.

Example.2.22. Let R denotes the set of all Real numbers. Define a binary operation $*$ on R such that $\mathrm{x} * \mathrm{y}=\mathrm{x}-\mathrm{y}$, for all $x, y \in R$. Then $(R, *, 0)$ is a $0-$ commutative $\mathrm{BF}_{1}-$ algebra and $0-$ commutative $\mathrm{BF}_{2}-$ algebra.

Example 2.23. Let R denotes the set of all Real numbers. Define a binary operation $*$ on R such that $\mathrm{x} * \mathrm{y}=\mathrm{x}-\mathrm{y}$ $+\sqrt{n}, \mathrm{n} \geq 0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$. Then $(\mathrm{R}, *, \sqrt{n})$ is a $\sqrt{n}-$ commutative $\mathrm{BF}_{1}-$ algebra and hence $\sqrt{n}-$ commutative BF_{2} - algebra.

Theorem 2.24. Every BP - algebra is a BF - algebra, but not conversely.
Proof. Let $(\mathrm{X}, *$, e) is a BP - algebra. Then (I) holds well. Now it is enough to prove that (II) and (BF) also holds well.
(II): $\mathrm{x} * \mathrm{e}=\mathrm{x} *(\mathrm{x} * \mathrm{x})$
(by I)
= x
(by BP_{1})
$(B F): e *(y * x)=(x * x) *(y * x)$ (by I)

$$
=x * y
$$

$$
\text { (by } \mathrm{BP}_{2} \text {) }
$$

Hence, ($\mathrm{X}, *, \mathrm{e}$) is a BF - algebra.
Converse of the above statement is not true in general. From example $2.14,(\mathrm{X}, *, 0)$ is a $\mathrm{BF}-$ algebra, but not a BPalgebra, as $(x * z) *(y * z) \neq x * y$, for $x=0, y=1 . z=2$.
Therefore, every BF - algebra need not be a BP - algebra.
Theorem 2.25. Every BP - algebra is a BG - algebra, but not conversely.
Proof. Let $(\mathrm{X}, *, \mathrm{e})$ is a BP - algebra. Then from theorem 2.24, (II) holds well. Now it is enough to prove that (BG) also holds well.

$$
\begin{array}{rlr}
(\mathrm{BG}):(\mathrm{x} * \mathrm{z}) *(\mathrm{e} * \mathrm{z}) & =\mathrm{x} * \mathrm{e} \\
& =\mathrm{x} & \left.\quad \text { (by } \mathrm{BP}_{2}\right) \\
\text { (by II) }
\end{array}
$$

Hence, $(X, *$, e) is a BG - algebra.
Converse of the above statement is not true in general.
From example $2.15,(X, *, 0)$ is a $B G-$ algebra, but not a $B P-\operatorname{algebra}$, as $(x * z) *(y * z) \neq x * y$, for $x=0$,
$\mathrm{y}=1, \mathrm{z}=2$.
Therefore, every BG - algebra need not be BP - algebra.
Theorem 2.26. Every BP - algebra is a BH - algebra, but not conversely.
Proof. Let $(\mathrm{X}, *, \mathrm{e})$ is a BP - algebra. Then from theorem 2.24, (II) holds well. Now it is enough to prove that (BH) also holds well.
Suppose that $x * y=e$, for all $x, y \in X$.
$\left(B P_{1}\right): x *(x * y)=y \Rightarrow x *(e)=y \Rightarrow x=y$.
i.e., $x * y=e \Rightarrow x=y$ for all $x, y \in X$.

Again, if $y * x=e$, for all $x, y \in X$, then $x * y=e *(y * x)=e *(e)=e$.
i.e., $x * y=e \Rightarrow x=y$, for all $x, y \in X$.

Hence, $x * y=e=y * x$ implies that $x=y$, for all $x, y \in X$.
Hence every BP - algebra is a BH - algebra.
[ICESTM-2018]
ISSN 2348-8034
Impact Factor- 5.070
Converse of the above statement is not true in general. Refer the following example.
Example 2.27. Let $\mathrm{X}=\{0,1,2\}$ and $*$ be the binary operation defined on X as shown in the following table.

$*$	0	1	2
0	0	1	1
1	1	0	2
2	2	2	0

Clearly, $(\mathrm{X}, *, 0)$ is a $\mathrm{BH}-$ algebra, but not $\mathrm{BP}-\operatorname{algebra,~as~}(\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{z}) \neq \mathrm{x} * \mathrm{y}$, for $\mathrm{x}=1, \mathrm{y}=0$ and $\mathrm{z}=2$. Hence, every BH - algebra need not be a BP - algebra.

Theorem 2.28. Let $(X, *, e) B P$ - algebra. Then X is a $B F_{1}$ - algebra.
Proof. Since every BP - algebra is a $\mathrm{BF}-$ algebra and BG - algebra, then every $\mathrm{BP}-$ algebra is a $\mathrm{BF}_{1}-$ algebra.
Theorem 2.29. Every BP - algebra is a BF_{2} - algebra, but not conversely.
Proof. Since every BP - Algebra is $\mathrm{BF}-$ algebra and $\mathrm{BH}-$ algebra then every $\mathrm{BP}-$ algebra is a $\mathrm{BF}_{2}-$ algebra. Converse of the above statement need not be true.

Example 2.30. Let $\mathrm{X}=\{0,1,2\}$ and $*$ be the binary operation defined on X as shown in the following table.

$*$	0	1	2
0	0	2	1
1	1	0	0
2	2	0	0

Clearly, $(\mathrm{X}, *, 0)$ is a BF_{2} - algebra, but not BP - Algebra, as $(\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{z}) \neq \mathrm{x} * \mathrm{y}$, for $\mathrm{x}=1, \mathrm{y}=0$ and $\mathrm{z}=2$ and also $\mathrm{y} *(\mathrm{y} * \mathrm{x}) \neq \mathrm{x}$, for $\mathrm{x}=2, \mathrm{y}=1$.
Therefore, every BP - algebra need not be a BF_{2} - algebra.
Theorem 2.31. Let $(X, *$, e) be a $B G$ - algebra with the condition that $z=x * y$, for all $x, y, z \in X$. Then ($X, *$, e) is a B - algebra.

Proof. Since $(X, *, e)$ is a $B G-$ algebra then it is enough to prove that (B) also holds good.
Consider, $(\mathrm{B}):(\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{y})$
(since $\mathrm{z}=\mathrm{x} * \mathrm{y}$)

$$
\begin{aligned}
& =\mathrm{e} \\
& =\mathrm{x} * \mathrm{x} \\
& =\mathrm{x} *((\mathrm{x} * \mathrm{y}) *(\mathrm{e} * \mathrm{y})) \\
& =\mathrm{x} *(\mathrm{z} *(\mathrm{e} * \mathrm{y}))
\end{aligned}
$$

(by I)
(by I)
(by BG)
(by $\mathrm{z}=\mathrm{x} * \mathrm{y}$)

Hence, $(\mathrm{x} * \mathrm{y}) * \mathrm{z}=\mathrm{x} *(\mathrm{z} *(\mathrm{e} * \mathrm{y}))$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
Therefore, $(X, *, e)$ is a B - algebra.
Corollary 2.32. Let $\left(X, *\right.$, e) be a $\mathrm{BF}_{1}-$ algebra with the condition that $\mathrm{z}=\mathrm{x} * \mathrm{y}$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$. Then X is a $\mathrm{B}-$ algebra.

Corollary 2.33. Let $(X, *, e)$ be an $e-$ commutative $\mathrm{BF}_{1}-$ algebra with the condition that $\mathrm{z}=\mathrm{x} * \mathrm{y}$. Then X is a $\mathrm{B}-$ algebra.

Theorem 2.34. Let $(X, *, e)$ be a $B G-$ algebra with the condition that $z=e * y$, for all $y, z \in X$. Then X is a $B-$ algebra.

Proof. Since $(X, *, e)$ is a $B G$ - algebra, then it is enough to prove that (B) also holds good.

Consider, $(\mathrm{B}):(\mathrm{x} * \mathrm{y}) * \mathrm{z}$	$=(\mathrm{x} * \mathrm{y}) *(\mathrm{e} * \mathrm{y})$		$($ since $\mathrm{z}=\mathrm{e} * \mathrm{y})$
	$=\mathrm{x}$		$($ by BG)
	$=x * e$		(by II)
	$=x *((\mathrm{e} * \mathrm{y}) *(\mathrm{e} * \mathrm{y}))$		(by I)
	$=x *(\mathrm{z} *(\mathrm{e} * \mathrm{y}))$		(since $\mathrm{z}=\mathrm{e} * \mathrm{y})$

Hence, $(\mathrm{x} * \mathrm{y}) * \mathrm{z}=\mathrm{x} *(\mathrm{z} *(\mathrm{e} * \mathrm{y}))$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
Therefore, ($X, *, e$) is a B - algebra.
Corollary 2.35. Let $(X, *, e)$ be a $B F_{1}-$ algebra with the condition that $z=e * y$, for all $y, z \in X$. Then $(X, *$, e) is a B - algebra.

Corollary 2.36. Let $(X, *, e)$ be an $e-$ commutative $B F_{1}$ - algebra with the condition that $z=e * y$, for all $x, y, z \in$ X. Then $(X, *, e)$ is a B - algebra.

Theorem 2.37. Let $(X, *, e)$ be a $B G-\operatorname{algebra}$ with $z=e * y$, for all $y, z \in X$. Then X is a $Q-$ algebra.
Proof. Since X is a BG - algebra, then it is enough to prove that (Q) holds well.
Consider, $(\mathrm{Q}):(\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{y}) *(\mathrm{e} * \mathrm{y})$

$$
=\mathrm{X}
$$

$$
=(\mathrm{x} *(\mathrm{e} * \mathrm{y})) *(\mathrm{e} *(\mathrm{e} * \mathrm{y}))
$$

$$
=(\mathrm{x} *(\mathrm{e} * \mathrm{y})) * \mathrm{y}
$$

$$
=(\mathrm{x} * \mathrm{z}) * \mathrm{y}
$$

$$
\begin{aligned}
& \text { (since } z=e * y \text {) } \\
& (\text { by } B G) \\
& \text { (by BG) } \\
& \text { (by BG) } \\
& \text { (since } z=e * y \text {) }
\end{aligned}
$$

Hence, $(x * y) * z=(x * z) * y$, for all $x, y, z \in X$.
Therefore, $(X, *, e)$ is a Q - algebra.
Corollary 2.38. Let $(X, *, e)$ be an $e-$ commutative $B G-\operatorname{algebra}$ with $z=e * y$, for all $y, z \in X$. Then X is a Q algebra.

Corollary 2.39. Let $\left(X, *\right.$, e) be a $B F_{1}-$ algebra with $z=e * y$, for all $y, z \in X$. Then X is a $Q-$ algebra.
Corollary 2.40. Let $(X, *, e)$ be an $e-$ commutative $B F_{1}-\operatorname{algebra}$ with $z=e * y$, for all $y, z \in X$. Then X is a $Q-$ algebra.

Theorem 2.41. Let $(X, *, e)$ be an $e-$ commutative BF_{1} - algebra with $\mathrm{z}=\mathrm{x} * \mathrm{y}$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$. Then X is a Q algebra.
Proof. Since X be an $\mathrm{e}-$ commutative BF_{1} - algebra, then it is enough to prove that (Q) holds well.

Consider, $(\mathrm{Q}):(\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{y})$

$$
\begin{aligned}
& =\mathrm{e} \\
& =\mathrm{y} * \mathrm{y} \\
& =((\mathrm{y} * \mathrm{x}) *(\mathrm{e} * \mathrm{x})) * \mathrm{y} \\
& =(\mathrm{x} *(\mathrm{e} *(\mathrm{y} * \mathrm{x}))) * \mathrm{y} \\
& =(\mathrm{x} *(\mathrm{x} * \mathrm{y})) * \mathrm{y} \\
& =(\mathrm{x} * \mathrm{z}) * \mathrm{y}
\end{aligned}
$$

(since $\mathrm{z}=\mathrm{x} * \mathrm{y}$)
(by I)
(by I)
(by BG)
(by E)
(by BF)
(since $\mathrm{z}=\mathrm{x} * \mathrm{y}$)

Hence, $(x * y) * z=(x * z) * y$, for all $x, y, z \in X$.
Therefore, $(\mathrm{X}, *, \mathrm{e})$ is a Q - algebra.
Theorem 2.42. Let $\left(X, *\right.$, e) be a $B F_{1}-$ algebra with $z=x * y$, for all $x, y, z \in X$ and (G). Then X is a Q - algebra.
Proof: Since X is a $B F_{1}-$ algebra with $z=x * y$, for all $x, y, z \in X$ and (G), then it is enough to prove that (Q) holds well.

$$
\begin{align*}
\text { Consider, }(\mathrm{Q}):(\mathrm{x} * \mathrm{y}) * \mathrm{z} & =(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{y}) \\
& =\mathrm{e} \\
& =\mathrm{y} * \mathrm{y} \\
& =((\mathrm{y} * \mathrm{x}) *(\mathrm{e} * \mathrm{x})) * \mathrm{y} \\
& =(\mathrm{e} *((\mathrm{e} * \mathrm{x}) *(\mathrm{y} * \mathrm{x}))) * \mathrm{y} \tag{byBF}\\
& =((\mathrm{e} *(\mathrm{e} * \mathrm{x})) *(\mathrm{e} *(\mathrm{y} * \mathrm{x}))) * \mathrm{y} \tag{byG}\\
& =(\mathrm{x} *(\mathrm{x} * \mathrm{y})) * \mathrm{y} \\
& =(\mathrm{x} * \mathrm{z}) * \mathrm{y}
\end{align*}
$$

(by I)
(by I)
(by BG)
(by D and BF)
(since $z=x * y$)
Hence, $(x * y) * z=(x * z) * y$, for all $x, y, z \in X$.
Therefore, $(X, *, e)$ is a Q - algebra.
Theorem 2.43. Let $(X, *$, e) be a $B F-$ algebra with the condition that $z=x * y$, for all $x, y, z \in X$. Then X is a BN - algebra.

Proof. Since X is a BF - algebra then it is enough to prove that (BN) holds good.
Consider, $(\mathrm{BN}):(\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{y})$
(since $\mathrm{z}=\mathrm{x} * \mathrm{y}$)
(by I)
(by I)
(by BF)
(since $\mathrm{z}=\mathrm{x} * \mathrm{y}$)

Hence, $(x * y) * z=(e * z) *(y * x)$, for all $x, y, z \in X$.
Therefore, $(X, *, e)$ is a BN - algebra.
Corollary 2.44. Let $(X, *, e)$ be an $e-$ commutative $B F-$ algebra with $z=x * y$, for all $x, y, z \in X$. Then X is a BN - algebra.

Corollary 2.45. Let $(X, *, e)$ be a $B F_{1}-$ algebra with $z=x * y$, for all $x, y, z \in X$. Then X is a $B N-$ algebra.
Corollary 2.46. Let $(X, *, e)$ be a $B F_{2}-$ algebra with $z=x * y$, for all $x, y, z \in X$. Then X is a $B N-$ algebra.
Corollary 2.47. Let $\left(X, *\right.$, e) be an $e-$ commutative $B F_{1}-$ algebra with $z=x * y$, for all $x, y, z \in X$. Then X is a BN - algebra.

Corollary 2.48. Let $(X, *, e)$ be an $e-$ commutative $\mathrm{BF}_{2}-$ algebra with $\mathrm{z}=\mathrm{x} * \mathrm{y}$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$. Then X is a BN - algebra.

Theorem 2.49. Let $(X, *, e)$ be an $e-$ commutative $B F_{1}-$ algebra with $z=e * y$, for all $y, z \in X$. Then X is a BN - algebra.

Proof. Taking $\mathrm{z}=\mathrm{e} * \mathrm{y}$ and using the conditions (BG), (F) and (D) easily any one can prove this theorem.

THOMSON REUTERS
[ICESTM-2018]
ISSN 2348-8034
Impact Factor- 5.070
Theorem 2.50. Let $(X, *, e)$ be an $e-$ commutative $B F-$ algebra. Then X is a $B N-$ algebra.
Proof. By using (D), (E) and (BF) we can prove this theorem.
Corollary 2.51. Let $(X, *, e)$ be an $e-$ commutative BF_{1} - algebra. Then X is a $\mathrm{BN}-$ algebra.
Corollary 2.52. Let $(X, *, e)$ be an $e-$ commutative BF_{2} - algebra. Then X is a $\mathrm{BN}-$ algebra.
Theorem 2.53. Let $(X, *$, e) be a $B F-$ algebra with (G). Then X is a $B N-$ algebra.
Proof. Proof is straight forward.
Corollary 2.54. Let $\left(X, *\right.$, e) be a $\mathrm{BF}_{1}-$ algebra with (G). Then X is a $\mathrm{BN}-$ algebra.
Corollary 2.55. Let $\left(X, *\right.$, e) be a $\mathrm{BF}_{2}-$ algebra with (G). Then X is a $\mathrm{BN}-$ algebra.
Proposition 2.56. Let $(X, *$, e) be a $B M$ - algebra. Then for all $x, y \in X$, the following are true.
(i) $e * e=e$
(ii) $\mathrm{x} * \mathrm{x}=\mathrm{e}$
(D) $e *(e * x)=x$
(E) $x *(e * y)=y *(e * x)$
(F) $x *(x * y)=y$
(G) $(\mathrm{e} * \mathrm{x}) *(\mathrm{e} * \mathrm{y})=\mathrm{y} * \mathrm{x}=\mathrm{e} *(\mathrm{x} * \mathrm{y})$

Proof. Proof is straight forward.
Theorem 2.57. Every BM - algebra is a BF - algebra, but not conversely.
Converse of the above statement need not be true.
Example 2.58. Let $X=\{0,1,2\}$ and $*$ be the binary operation defined on X as shown in the following table.

$*$	0	1	2
0	0	1	2
1	1	0	1
2	2	1	0

Then $(X, *, 0)$ is a $B F-$ algebra, but not a $B M-$ algebra, as $(z * x) *(z * y) \neq y * x$, for $x=2, y=0$ and $z=1$.
Therefore, every BF - algebra need not be a BM - algebra.
Theorem 2.59. Every BM - algebra is a BG - algebra, but not conversely.
Proof. By using the conditions (BF), (G), (BM) and (II), we prove this theorem.
Converse of the above statement need not be true.
From example 2.14, $(\mathrm{z} * \mathrm{x}) *(\mathrm{z} * \mathrm{y}) \neq \mathrm{y} * \mathrm{x}$, for $\mathrm{x}=0, \mathrm{y}=1, \mathrm{z}=2$.
Therefore, every BG - algebra need not be a BM - algebra.
Theorem 2.60. Let $(X, *, e)$ is a $B M$ - algebra. Then X is a BF_{1} - algebra.
[ICESTM-2018]
ISSN 2348-8034
Impact Factor- 5.070
Theorem 2.61. Every BM - algebra is a BH - algebra, but not conversely.
Proof. Proof is straight forward.
Converse of the above statement need not be true.
Example 2.62. Let $X=\{0,1,2\}$ and $*$ be the binary operation defined on X as shown in the following table.

$*$	0	1	2
0	0	2	1
1	1	0	2
2	2	2	0

Then $(\mathrm{X}, *, 0)$ is a $\mathrm{BH}-$ algebra but not a $\mathrm{BM}-\operatorname{algebra}$, as $(\mathrm{z} * \mathrm{x}) *(\mathrm{z} * \mathrm{y}) \neq \mathrm{y} * \mathrm{x}$, for $\mathrm{x}=0, \mathrm{y}=1$ and $\mathrm{z}=2$.
Therefore, every BH - algebra need not be a BM - algebra.
Theorem 2.63. Every BM - algebra is a BF_{2} - algebra but not conversely.
Proof: Since every BM - algebra is a BF - algebra and $\mathrm{BH}-$ algebra then every $\mathrm{BM}-$ algebra is a $\mathrm{BF}_{2}-$ algebra. Converse of the above statement need not be true. Refer the following example.

Example 2.64. Let $\mathrm{X}=\{0,1,2\}$ and $*$ be the binary operation defined on X as shown in the following table.

$*$	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	1
3	3	2	3	0

Clearly, $(\mathrm{X}, *, 0)$ is a BF_{2} - algebra but not a BM - algebra, as $(\mathrm{z} * \mathrm{x}) *(\mathrm{z} * \mathrm{y}) \neq \mathrm{y} * \mathrm{x}$, for $\mathrm{x}=2, \mathrm{y}=0$ and $\mathrm{z}=3$. Therefore, every BF_{2} - algebra need not be a BM - algebra.

Theorem 2.65. Cancellation laws holds good in BM - algebra.
Proof. Let $(X, *, e)$ be a BM - algebra.
Left Cancellation Law: $\mathrm{z} * \mathrm{x}=\mathrm{z} * \mathrm{y} \Rightarrow \mathrm{x}=\mathrm{y}$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
Suppose that, $\mathrm{z} * \mathrm{x}=\mathrm{z} * \mathrm{y}$
From (BM), $(\mathrm{z} * \mathrm{x}) *(\mathrm{z} * \mathrm{y})=\mathrm{y} * \mathrm{x}$

$$
\begin{align*}
& \Rightarrow(\mathrm{z} * \mathrm{y}) *(\mathrm{z} * \mathrm{y})=\mathrm{y} * \mathrm{x} \\
& \Rightarrow \mathrm{e}=\mathrm{y} * \mathrm{x} \tag{byII}
\end{align*}
$$

Since, $x * y=e *(y * x)=e * e=e \Rightarrow x * y=e$
Since every BM - algebra is a BG - algebra, then $x=(x * y) *(e * y)=e *(e * y)=y \Rightarrow x=y$.
Thus, left Cancellation Law holds good in BM - algebra.
Right Cancellation Law: $x * z=y * z \Rightarrow x=y$, for all $x, y, z \in X$.
Suppose that $\mathrm{x} * \mathrm{z}=\mathrm{y} * \mathrm{z}$
[ICESTM-2018]
ISSN 2348-8034
Impact Factor- $\mathbf{5 . 0 7 0}$

$$
\begin{aligned}
& \Rightarrow \mathrm{e} *(\mathrm{x} * \mathrm{z})=\mathrm{e} *(\mathrm{y} * \mathrm{z}) \\
& \Rightarrow \mathrm{z} * \mathrm{x}=\mathrm{z} * \mathrm{y} \\
& \Rightarrow \mathrm{x}=\mathrm{y}
\end{aligned}
$$

(by BF)
(by LCL)

Therefore, right Cancellation Law holds good in BM - algebra.
Theorem 2.66. Let $(X, *, e)$ be an $e-$ commutative $B F_{1}-$ algebra with $z=x * y$, for all $x, y, z \in X$. Then $(X, *$, e) is a BM - algebra.

Proof. Since $(\mathrm{X}, *, \mathrm{e})$ is an e - commutative $\mathrm{BF}_{1}-$ algebra then (II) holds good. Now it is enough to prove that $(\mathrm{BM}):(\mathrm{z} * \mathrm{x}) *(\mathrm{z} * \mathrm{y})=\mathrm{y} * \mathrm{x}$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$, also holds well.
Consider, $(\mathrm{z} * \mathrm{x}) *(\mathrm{z} * \mathrm{y})=(\mathrm{z} * \mathrm{x}) *(\mathrm{e} *(\mathrm{y} * \mathrm{z}))$

$$
\begin{array}{ll}
=(\mathrm{y} * \mathrm{z}) *(\mathrm{e} *(\mathrm{z} * \mathrm{x})) & (\text { by E) } \\
=(\mathrm{y} * \mathrm{z}) *(\mathrm{e} *(\mathrm{e} * \mathrm{y})) & (\text { since } \mathrm{z} * \mathrm{x}=\mathrm{e} * \mathrm{y}) \\
=(\mathrm{y} * \mathrm{z}) * \mathrm{y} & (\text { by D) } \\
=\mathrm{e} *(\mathrm{y} *(\mathrm{y} * \mathrm{z})) & (\text { by BF }) \\
=\mathrm{e} * \mathrm{z} & \\
=\mathrm{y} * \mathrm{x} & \text { (by F) } \\
\text { (by BF) }
\end{array}
$$

Hence, $(\mathrm{z} * \mathrm{x}) *(\mathrm{z} * \mathrm{y})=\mathrm{y} * \mathrm{x}$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
Therefore, $(X, *, e)$ is a BM - algebra.
Corollary 2.67. Let $(X, *, e)$ be an $e-$ commutative $B F_{1}-$ algebra with $z=x * y$, for all $x, y, z \in X$. Then $(X, *, e)$ is a QS - algebra.

Theorem 2.68. Let $(X, *, e)$ be a $B F_{1}-\operatorname{algebra}$ with $z=x * y$, for all $x, y, z \in X$ and (G). Then $(X, *, e)$ is a BM algebra.

Proof. Taking $\mathrm{z}=\mathrm{x} * \mathrm{y}$ and using $(\mathrm{BF}),(\mathrm{G})$ and (F) we can prove this theorem.
Corollary .2.69. Let $(X, *, e)$ be a $B F_{1}-$ algebra with $z=x * y$, for all $x, y, z \in X$ and (G). Then $(X, *$, e) is a QS algebra.

Theorem 2.70. Let $(X, *, e)$ be an $e-$ commutative $B_{1}-$ algebra with $z=x * y$, for all $x, y, z \in X$. Then $(X, *, e)$ is a BM - algebra.

Proof. Proof is similar to proof of theorem 2.69.
Theorem 2.71. Let $(X, *, e)$ be an $e-$ commutative $B F_{1}$ - algebra with $e * z=x * z$, for all $x, z \in X$. Then X is a BM - algebra.

Proof. Since (X,*, e) is an e - commutative BF_{1} - Algebra, then (II) holds good. It is enough to prove that (BM): (z $* x) *(z * y)=y * x$, for all $x, y, z \in X$ also holds good.

Consider, $(\mathrm{z} * \mathrm{x}) *(\mathrm{z} * \mathrm{y})$	$=(\mathrm{e} *(\mathrm{x} * \mathrm{z})) *(\mathrm{z} * \mathrm{y})$		(by BF)
	$=(\mathrm{e} *(\mathrm{e} * \mathrm{z})) *(\mathrm{z} * \mathrm{y})$		(since $\mathrm{x} * \mathrm{z}=\mathrm{e} * \mathrm{z})$
	$=\mathrm{z} *(\mathrm{z} * \mathrm{y})$		(by D)
	$=\mathrm{y} * \mathrm{e}$		(by II)
	$=\mathrm{y} *(\mathrm{z} * \mathrm{z})$		(by I)
	$=\mathrm{y} *(\mathrm{z} *(\mathrm{z} * \mathrm{x}))$		(since $\mathrm{x} * \mathrm{z}=\mathrm{e} * \mathrm{z})$
	$=\mathrm{y} * \mathrm{x}$		(by G)

Hence, $(\mathrm{z} * \mathrm{x}) *(\mathrm{z} * \mathrm{y})=\mathrm{y} * \mathrm{x}$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ Therefore, $(X, *, e)$ is a BM - algebra.

Corollary 2.72. Let $(X, *, e)$ is a $B_{1}-\operatorname{algebra}$ with (F) and $e * z=x * z$, for all $x, z \in X$. Then X is a $B M-$ algebra.

Theorem 2.73. Let $\left(X, *\right.$, e) be an $e-$ commutative $B F_{1}$ - algebra with $z * y=e * x$, for all $x, y, z \in X$. Then X is a BM - algebra.

Proof. Proof is similar to proof of the theorem 2.71.
Theorem 2.74. Let $(X, *, e)$ is a $B F_{1}-\operatorname{algebra}$ with (G) and $z * y=e * x$, for all $x, y, z \in X$. Then X is a $B M-$ algebra.

Proof. By taking $\mathrm{z} * \mathrm{y}=\mathrm{e} * \mathrm{x}$ and using (BF), (G), (D) and (F), we can prove theorem 2.74.
Theorem 2.75. Let $(X, *, e)$ is an $e-$ commutative $B F-\operatorname{algebra}$ with $(x * z) *(y * z)=x * y$, for all $x, y, z \in X$. Then ($X, *, e$) is a BM - algebra.

Proof. Taking $(\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{z})=\mathrm{x} * \mathrm{y}$ and using (BF) and (E) we prove this theorem.
Theorem 2.76. Let $(X, *$, e) be a $B P-\operatorname{algebra}$ with $x * z=e$, for all $x, z \in X$. Then X is a $B Z-$ algebra.

Proof. Let $\mathrm{x} * \mathrm{z}=\mathrm{e}$.
Consider, for any $x, y, z \in X$

$$
\begin{aligned}
((\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{z})) *(\mathrm{x} * \mathrm{y}) & =((\mathrm{e}) *(\mathrm{y} * \mathrm{z})) *(\mathrm{x} * \mathrm{y}) & & (\text { since } \mathrm{x} * \mathrm{z}=\mathrm{e}) \\
& =(\mathrm{z} * \mathrm{y}) *(\mathrm{x} * \mathrm{y}) & & (\text { by BF) } \\
& =\mathrm{z} * \mathrm{x} & & (\text { by BP } 2) \\
& =\mathrm{e} *(\mathrm{x} * \mathrm{z}) & & (\text { by BF) } \\
& =\mathrm{e} * \mathrm{e} & & \text { (since } \mathrm{x} * \mathrm{z}=\mathrm{e}) \\
& =\mathrm{e} & & \text { (by II) }
\end{aligned}
$$

Hence, $((x * z) *(y * z)) *(x * y)=e$, for all $x, y, z \in X$.
Therefore, $(\mathrm{X}, *, \mathrm{e})$ is a BZ - algebra.
Theorem 2.77. Let $(X, *, e)$ be a $B P-$ algebra with $x * y=e$, for all $x, y \in X$. Then X is a $B Z-$ algebra.
Proof. Let $(X, *, e)$ be a $B P-$ algebra with $x * y=e$, for all $x, y \in X$.
Consider for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X},((\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{z})) *(\mathrm{x} * \mathrm{y})=((\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{z})) *(\mathrm{e}) \quad($ since $\mathrm{x} * \mathrm{y}=\mathrm{e})$

$$
\begin{array}{ll}
=(x * z) *(y * z) & (\text { by II }) \\
=x * y & \left(\text { by } \mathrm{BP}_{2}\right) \\
=\mathrm{e} & (\text { since } \mathrm{x} * \mathrm{y}=\mathrm{e})
\end{array}
$$

Hence, $(X, *, e)$ is a BZ - algebra.
Theorem 2.78. Let $(X, *, e)$ be a BP - algebra with (E). Then X is a BM - algebra.
Proof. Using (I), ($\left.\mathrm{BP}_{1}\right),(\mathrm{BF}),(\mathrm{E})$ and $\left(\mathrm{BP}_{2}\right)$ any one can prove this theorem.
Theorem 2.79. Let $(X, *$, e) be a BP - algebra with (G). Then X is a BM - algebra.
Proof. It is enough to prove that (BM) holds good.
Consider, $(\mathrm{z} * \mathrm{x}) *(\mathrm{z} * \mathrm{y})=\mathrm{e} *((\mathrm{z} * \mathrm{y}) *(\mathrm{z} * \mathrm{x}))$
(by BF)
$=(\mathrm{e} *(\mathrm{z} * \mathrm{y})) *(\mathrm{e} *(\mathrm{z} * \mathrm{x}))$
(by G)

THOMSON REUTERS
[ICESTM-2018]
ISSN 2348-8034
Impact Factor- $\mathbf{5 . 0 7 0}$

$$
\begin{aligned}
& =(\mathrm{y} * \mathrm{z}) *(\mathrm{x} * \mathrm{z}) \\
& =\mathrm{y} * \mathrm{x}
\end{aligned}
$$

(by BF)
(by BP_{2})

Hence, every BP - algebra with (G) is a $\mathrm{BM}-$ algebra.
Theorem 2.80. Let $(X, *, e)$ is a $B M$ - algebra. Then X is a $B P-$ algebra.
Proof. Proof is straight forward.
Theorem 2.81. Let $(X, *, e)$ be an $e-$ commutative $B M-$ algebra. Then X is a $B P-$ Algebra.
Proof. Let $(X, *, e)$ is an e - commutative $B M$ - Algebra. It is enough to prove that $\left(\mathrm{BP}_{1}\right): x *(x * y)=y$ and $\left(B P_{2}\right)$:
$(y * z) *(x * z)=y * x$, for all $x, y, z \in X$.
Consider $\mathrm{x} *(\mathrm{x} * \mathrm{y})=\mathrm{x} *(\mathrm{e} *(\mathrm{y} * \mathrm{x}))$ (by BF)

$$
\begin{aligned}
& =(y * x) *(e * x) \\
& =e *((e * x) *(y * x)) \\
& =e *(e * y) \\
& =y
\end{aligned}
$$

Hence, $x *(x * y)=y$, for all $x, y \in X$.
Again consider, $\left(\mathrm{BP}_{2}\right):(\mathrm{y} * \mathrm{z}) *(\mathrm{x} * \mathrm{z})=(\mathrm{y} * \mathrm{z}) *(\mathrm{e} *(\mathrm{z} * \mathrm{x})) \quad$ (by BF)

$$
\begin{aligned}
& =(\mathrm{z} * \mathrm{x})) *(\mathrm{e} *(\mathrm{y} * \mathrm{z})) \\
& =(\mathrm{z} * \mathrm{x}) *(\mathrm{z} * \mathrm{y}) \\
& =\mathrm{y} * \mathrm{x}
\end{aligned}
$$

Hence, $(\mathrm{y} * \mathrm{z}) *(\mathrm{x} * \mathrm{z})=\mathrm{y} * \mathrm{x}$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
Therefore, every e - Commutative $\mathrm{BM}-$ algebra is a $\mathrm{BP}-$ algebra.
Theorem 2.82. Every BM - algebra with $y * z=e$, for all $y, z \in X$ is a $B Z$ - algebra, but not conversely.
Proof. Let $(\mathrm{X}, *, \mathrm{e})$ is a BM - Algebra.
Now, it is enough to prove that $((\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{z})) *(\mathrm{x} * \mathrm{y})=\mathrm{e}$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
Consider, $((\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{z})) *(\mathrm{x} * \mathrm{y})=((\mathrm{x} * \mathrm{z}) *(\mathrm{e})) *(\mathrm{x} * \mathrm{y})$
(since $\mathrm{x} * \mathrm{z}=\mathrm{e}$)

$$
=(\mathrm{x} * \mathrm{z}) *(\mathrm{x} * \mathrm{y})
$$

$$
=\mathrm{y} * \mathrm{z} \quad \text { (by BM) }
$$

$$
=\mathrm{e} \quad(\text { since } \mathrm{y} * \mathrm{z}=\mathrm{e})
$$

Therefore, $(\mathrm{X}, *, \mathrm{e})$ is a BZ - algebra.
Corollary 2.83. Every $B M$ - algebra with $x * z=e$, for all $x, z \in X$ is a $B Z$ - algebra, but not conversely.

REFERENCES

[1] Ahn. S. S and Kim. H. S., On QS-algebras, Journal of Chungcheong Math. Society, 12(1999), 33-41.
[2] Ahn. S. S, Han. J. S, On BP - Algebras, Hacettepe Jr. of Math. and Stat., 43 (2013), 551 - 557.
[3] Jun. Y. B, Roh. E. H. and Kim. H. S., On BH-algebras, Scientiae Mathematicae 1(1998), 347-354.
[4] Imai. Y and Iseki. K, On axiom systems of Propositional Calculi, XIV, Proc. Japan Academy, 42(1966) 1922.
[5] Iseki. K, An Algebra related with a Propositional Calculus, Proc. Japan Academy, 42(1966), 26 - 29.
[6] Iseki. K and Tanaka. S, An Introduction to the theory of BCK - Algebras, Math. Japonica, 23(1978), 1- 26.
[7] Iseki. K, On BCI - Algebras, Math. Seminar Notes, 8(1980), 125-130.
[8] Kim. C. B and Kim. H. S., On BM - Algebras, Scientiae Mathematicae Japonicae Online, e-2006, 215221.
[9] Kim. C. B and Kim. H. S., On BG - Algebras, Demonstratio Mathematica, 41(2008), 497 - 505.
[10]Kim. C. B and Kim. H. S., On BN-algebras, Kyungpook Mathematical Journal, 53(2013), 175-184. [11]Neggers. J, Ahn. S. S and H. S. Kim, On Q - algebras, Int. Jr. Math. and Math. Sci., 27 (2001), 749 - 757. [12]Neggers. J and Kim. H. S., On B -algebras, Math. Vesnik, 54(2002), 21 - 29.
[13]Walendziak . A, On BF - algebras, Mathematica Slovaca, 57(2007), 119 - 128.
[14]Zhang. X and Ye. R, BZ - Algebra and group-, Jr. Math. Phy. Sciences, 29(1995), 223-233.

